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Cooperative phenomena

* Elementary excitations in solids describe the
response of a solid to a perturbation
— Quasiparticles

usually fermions, resemble the particles that
make the system, e.g. quasi-electrons

— Collective excitations
usually bosons, describe collective motions

use second quantization with Fermi-Dirac or Bose-
Einstein statistics



Magnetism

the Bohr—van Leeuwen theorem

when statistical mechanics and classical mechanics are applied
consistently, the thermal average of the magnetization is always zero.

Magnetism in solids is solely a quantum mechanical effect
Origin of the magnetic moment:

— Electron spin S
— Electron orbital momentum L

From (macroscopic) response to external magnetic field H

— Diamagnetism 7y <0, x~1 X 107°, insensitive to temperature

. C .
— Paramagnetism >0, x = p Curie law
C

= — Curie-Weiss law
X T+A

— Ferromagnetism exchange interaction (quantum)
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“The Taxonomy of Magnetism”, courtesy C. M. Huxd.
See also C. M. Hurd: Contemp. Phys. 23, 469 (1982).
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e Classical and quantum theory for diamagnetism
— Calculate (r?)

e Classical and quantum theory for paramagnetism
— Superparamagnetism, Langevin function
— Hund’s rules
— Magnetic state
— Crystal field

— Quenching of orbital angular momentum L,
* Angular momentum operator
e Spherical harmonics

— Jahn-Teller effect
— Paramagnetic susceptibility of conduction electrons

25+1L
]
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* Ferromagnetism
— Microscopic — ferro, antiferro, ferri magnetism
— Exchange interaction
— Exchange splitting — source of magnetization

two-electron system spin-independent
Schrodinger equation

— Type of exchange: direct exchange, super
exchange, indirect exchange, itinerant exchange

— Spin Hamiltonian and Heisenberg model
— Molecular-field (mean-field) approximation



Critical phenomena

Universality. Divergences near the critical point are identical in a variety of
apparently different physical systems and also in a collection of simple models.
Scaling. The key to understanding the critical point lies in understanding the
relationship between systems of different sizes. Formal development of this
idea led to the renormalization group of Wilson (1975).

Landau Free Energy

0.0

'A} >0 FIM, T) =Ao(T)+AT)M?Z +A(T)M 4 +HM.
L\ A=0 T—T
A /« / TC
. /// ///
—— F = ath2+ 34M4-|- HM.

Eﬂgﬁ%?é;;ggzo $
_ 100 L o C;S(lehjtém?mzo .
| G;’ . Molar heat capacities of four ferromagnetic
) g“ % copper salts versus scaled temperature /7/7..

_&ﬂ,f - egiey [Source Jongh and Miedema (1974).]



Correspondence between Liquids and Magnets

» Specific Heat— o

* Magnetization and Density— [

» Compressibility and Susceptibility— y
e (Critical Isotherm— o

e Correlation Length — v

* Power-Law Decay at Critical Point— n

Summary of critical exponents, showing correspondence between fluid-gas systems,
magnetic systems, and the three-dimensional Ising model.

Exponent Fluid Magnet Mean Field Theory Experiment 3d Ising
o Cy~t|™™ Cy~ ] discontinuity 0.11-0.12 0.110

3 An~t|?  M~|t|? 3 0.35-0.37 0.325

¥ Ky ~Jt]™7  x~ |77 1 1.21-1.35  1.241

) P~|Anl® |H|~|M]° 3 4.0-4.6 4.82

v £~ |t|™" £~ e 7 0.61-0.64 0.63

7 glr)~r=1=1 g(y) ~r=t=m 0.02-0.06 0.032

Source: Vicentini-Missoni (1972) p. 67, Cummins (1971), p. 417, and Goldenfeld
(1992) p. 384.

Relations Among Exponents
a+2B+y=2 2Z-nyv=y

§=1+% 2—a=3v



e Stoner band ferromagnetism

Teodorescu, C. M.; Lungu, G. A. (November 2008). "Band ferromagnetism in systems
of variable dimensionality". Journal of Optoelectronics and Advanced Materials 10
(11): 3058—-3068.
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Platonic solid From Wikipedia

In geometry, a Platonic solid is a convex polyhedron that is reqular, in the
sense of a regular polygon. Specifically, the faces of a Platonic solid are
congruent regular polygons, with the same number of faces meeting at each
vertex; thus, all its edges are congruent, as are its vertices and angles.

There are precisely five Platonic solids (shown below):

The name of each figure is derived from its number of faces: respectively 4,
6, 8,12, and 20.

The aesthetic beauty and symmetry of the Platonic solids have made them a
favorite subject of geometers for thousands of years. They are named for the

ancient Greek philosopher Plato who theorized that the classical elements were

constructed from the regular solids.

v

Cube

Tetrahedron hexahedron Octahedron Dodecahedron Icosahedron



http://en.wikipedia.org/wiki/Cube
http://en.wikipedia.org/wiki/Hexahedron
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Convex_polyhedron
http://en.wikipedia.org/wiki/Regular_polyhedron
http://en.wikipedia.org/wiki/Regular_polygon
http://en.wikipedia.org/wiki/Congruence_(geometry)
http://en.wikipedia.org/wiki/Vertex_(geometry)
http://en.wikipedia.org/wiki/Mathematical_beauty
http://en.wikipedia.org/wiki/Symmetry
http://en.wikipedia.org/wiki/Geometers
http://en.wikipedia.org/wiki/Greek_philosophy
http://en.wikipedia.org/wiki/Plato
http://en.wikipedia.org/wiki/Classical_element
http://en.wikipedia.org/wiki/File:Tetrahedron.svg
http://en.wikipedia.org/wiki/File:Hexahedron.svg
http://en.wikipedia.org/wiki/File:Octahedron.svg
http://en.wikipedia.org/wiki/File:POV-Ray-Dodecahedron.svg
http://en.wikipedia.org/wiki/File:Icosahedron.svg

Solar system

S, p electron orbits

Electronic orbit
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the page at an instant of time.
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3d transition metals:
Mn atom has 5d 7T electrons Bulk Mn is NOT magnetic

s, p electron orbital

©* @ &

3d electron distribution in real space

$NSg W

Co atom has 5 d Telectrons and 2 d 4 electrons
Bulk Co Is magnetic.

Orbital viewer v
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Stern-Gerlach Experiment
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Stoner criterion for ferromagnetism:

| N(Ep) > 1, | Is the Stoner exchange parameter and
N(Eg) Is the density of states at the Fermi energy.

I I

E E
ds ds 4s 4s
3d 3d 3d -\

NPl NP

+— N(E) N(E) — <~—— N(E) . N(E)—
For the non-magnetic state there For a ferromagnetic state, N1 >
are identical density of states N | . The polarization is
for the two spins. indicated by the thick blue
arrow.

Schematic plot for the energy band structure of 3d transition metals.

Teodorescu and Lungu, "Band ferromagnetism in systems of variable dimensionality". 20
J Optoelectronics and Adv. Mat. 10, 3058—-3068 (2008).
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W https://enwikipedia.org/wiki/Exchange_interaction

Exchange interaction

P~-acd

W Exchange interaction - Wi...

Google | Exchange interaction ME E=RSN LRSI s R £ 8 e BAX -
PyccrMid . . .
S —— Exchange Interactions between localized electron magnetic moments [sdi] A
Tiéng Viét

#Edit links

Quantum mechanical particles are classified as bosons or fermions. The spin—statistics theorem of guantum field theory demands that all particles with hali-integer spin
behave as fermions and all particles with integer spin behave as bosons. Multiple bosons may occupy the same quantum state; by the Pauli exclusion principle, however, no
two fermions can occupy the same state. Since electrons have spin 1/2, they are fermions. This means that the overall wave function of a system must be antisymmetric
when two electrons are exchanged, i.e. interchanged with respect to both spatial and spin coordinates. First, however, exchange will be explained with the neglect of spin.

Exchange of spatial coordinates [=di]

Taking a hydrogen molecule-like system (i.e. one with two electrons). we may attempt to model the state of each electron by first assuming the electrons behave
independently, and taking wave functions in position space of (T‘l) for the first electron and ‘bb(?"g) for the second electron. We assume that @, and b, are orthogonal
and that each corresponds to an energy eigenstate of its electron. Now, we may construct a wave function for the overall system in position space by using an antisymmetric
combination of the product wave functions in position space

‘I’A(ﬂ‘ ?"42) = [‘I’a(ﬂ)@b(f"ﬁ) - ‘I’b(ﬂ)@a(fb)] (1)

1
V2
Alternatively, we may also construct the overall position—space wave function by using a symmetric combination of the product wave functions in position space:

Wo(Fy, 75) = —=[®u(F1) Py(72) + §y (7)o (7)) @

1
V2
Treating the exchange interaction in the hydrogen molecule by the perturbation method, the overall Hamiltonian is:
H=p0+40)
where () — _B (V2 +V3) - & _ 10— (i n &£ _€e_ 6_2)

2m ™ T2 Ra 12 Tal Tb2
Two eigenvalues for the system energy are found:
C+J.,

1+ B2
where the E. is the spatially symmetric solution and E- is the spatially antisymmetric solution. A variational calculation yields similar results. 74 can be diagonalized by using
the position—space functions given by Eqgs. (1) and (2). In Eq. (3), G is the Coulomb integral, B is the overlap integral, and J., is the exchange integral. These integrals
are given by:

By =Eog + (3)

11t 11
- =2 _ _ 2 _
C= / @, () ( ot -~ m) Dy(7) dry d°ry @

T2
B= f 0y (7a) 0o (72) dr2 (@

R TR T T B PP
Jeo= [ @,(7)8,(7) (R_ PRI _) B, (7)) a(7) dr1 dPry ©
ab 12 Ta1 T'b2
The terms in parentheses in Eqs. (4) and (6) correspond to: proton—proton repulsion (R.y), electron—electron repuision (5:2), and electron—proton atiraction (Fasszsiss)-All

guantities are assumed to be real.
(V)

Although in the hyvdrogen molecule the exchange integral. Eq. (6). is negative, Heisenbera first sugaested that it changes sign at some critical ratio of internuclear distance to

#100% =
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Stoner—Wohlfarth model

The Stoner—Wohlfarth model is a widely used model for the magnetization of single-
domain ferromagnets.l It is a simple example of magnetic hysteresis and is useful for
modeling small magnetic particles in magnetic storage, biomagnetism, rock magnetism
and paleomagnetism.

E = K,V sin® (¢ — 8) — poM,V H cos ¢,

o m
0 oy v ——r— K is the anisotropy parameter V/
45° ﬁ"“’“/ is the volume of the magnet, M, is
04 80 the saturation magnetization, and
Mo is the vacuum permeability
| h
1 0.5 0.5 .
v ﬂf/
— 'Ffﬂ;!
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Berry Phase

Aharonov-Bohm Effect

=

&
electrons
Electron hologram showing interference

(A) ‘ l (B) fringes of electrons passing through small

toroidal magnet. The magnetic flux passing
through the torus is quantized so as to produce
an integer multiple of 7 phase change in the
electron wave functions. The electron is
completely screened from the magnetic
induction in the magnet. In (A) the phase
change is 0, while in (B) the phase change is .
[Source: Tonomura (1993), p. 67.]

Solenoid, flux ®

Electrons traveling around a flux tube suffer a phase
change and can interfere with themselves even if
they only travel through regions where B = 0.

(B) An open flux tube is not experimentally
realizable, but a small toroidal magnet with no flux
leakage can be constructed instead.

c1>=jd2rBZ=j£dF-/T



Parallel transport of a vector along a closed path on the sphere S: leads
to a geometric phase between 1nitial and final state.

Real-space Berry phases: Skyrmion soccer (invited)
Karin Everschor-Sitte and Matthias Sitte

Journal of Applied Physics 115, 172602 (2014); doi: 10.1063/1.4870695
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Berry phase formalism for

intrinsic Hall effects
From Prof. Guo Guang-Yu
Berry phase
[Berry, Proc. Roy. Soc. London A 392, 451 (1984)]
E n N
Parameter dependent system: T~
1€,(4). v,(4) | I~
Adiabatic theorem: f A
—i|l dte, /h :
—_ J:] n _I}/n (I)
(r)=w,(A)) e e A A
(Geometric phase:
A ;LO
7, =1, A2y, lis \m) .
125




Well defined for a closed path

From Prof. Guo Guang-Yu

d
—§dA(y, |i—
i ')yﬂ Ia)l, WH> /12 4
Stokes theorem
C
7, = |[dAdA, © |
A

Berry Curvature
=y
az

lv)-igt

)
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Analogies

From Prof. Guo Guang-Yu

Berry curvature Magnetic field
Q1) B(¥)
Berry connection Vector potential
Wi \w A7)
Geometnc phase Aharonov-Bohm phase
§arly] f%‘w> =[Ja*2 au)  §dr AGF) = [[d*r BF)
Chern number Dirac monopole

ﬁdzﬁ Q(1) = integer ﬁdzr B(7)=mteger h/e

27



Semiclassical dynamics of Bloch electrons
Old version [e.g., Aschroft, Mermin, 1976]

From Prof. Guo Guang-Yu

 h ok
li::—EE—Eichzfa@(r)—Eich
h hC i or

New version [Marder, 2000]
Berry phase correction [Chang & Niu, PRL (1995), PRB (1996)]

« _ 1 de, (k)
© h Jk

-kxQ (k),

ou ;. o,

Q, (k)= _Im<8—k [ X] K > (Berry curvature)
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Demagnetization factor D

can be solved analytically in some cases, numerically in others

For an ellipsoid D, + D, + D, = 1 (Sl units) D, + D, + D, = 47 (cgs units)
Solution for Spheroid a = b #c

1. Prolate spheroid (football shape) ¢/a=r>1;a=b, Incgs units

D = 4% | A=In(r+vr2—1) - 1] 5
D =D = 4 — D, 2
a— ¥Yb — 2
Limiting case r >>1 ( long rod ) T
c= i—? [In(2r) —1] « 1 Note: you measure 2nM —
D, =D, =21 without knowing the sample | puendiuirk
2. Oblate Spheroid (pancake shape) ¢/a=r<1;a=b —————
41T — D 1t PYCoPYxd =
— — -1 . . c o
D, = - r2 ll _1 - COS rl D, =D, == ;/
= ’\A}Ag’*\" mj;
Limiting case r >> 1 ( flat disk) o

-20000 -10000 0 10000 20000
H(0e)

D, =4m

D,=D, =7m?r«1 Note: you measure 4ntM

without knowing the sample



Surface anisotropy

E = Eexchange + EZeeman + Emag + Eanisotropy + -

+—

o
4
—

Eep : X 2]§l> Sj
Ezeeman :M - H
Emag —fB av

E . "N
anisotropy

For hcp Co= K, sin? @ + KZ’ sin* 8
For bcc Fe = K, (a?as + asas + a3 al) + K, (a?asa3)
: directional cosines

=+ Ky -)1<eff t =2Ks+ Ky - t

_ 2K
Surface anisotropy K = )



Ferromagnetic domains

— competition between exchange, anisotropy, and
maghnetic energies.

— Bloch wall: rotation out of the plane of the two spins

— Neel wall: rotation within the plane of the two spins

N
Wall energy density 0, = gy + Ognis = JS?m%/(Na?) + KNa a : lattice constant

do,, /ON = 0, N =+ [JS?r2/(Ka3)] ~ 300 in Fe

2
For a 180° Bloch wall rotated in N+1 atomic planes  NAE,,= N(JS? (E) )

o, = 21\ KJS?/a = 1erg/cm? inFe

, A=J]S%/a Exchange stiffness constant

Wall width  Na =m./JS?/Ka=mn

STES



Domain wall energy vy versus thickness D of Nig,Fe,, thin films

v (erg/cm?)

Cross-tie wall

e

Bloch wall

Cross-tie zone

| | l =aic

400 800 1200 1600 2000

D  Fiim thickness, A

Yn<7¥s~20NmM

Thick films have Bloch walls
Thin films have Neel walls

Cross-tie walls show up in
between.

A=10%erg/cm
K=1500 erg/cm3
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Magnetic Resonance

* Nuclear Magnetic Resonance (NMR)
— Line width
— Hyperfine Splitting, Knight Shift
— Nuclear Quadrupole Resonance (NQR)
* Ferromagnetic Resonance (FMR)
— Shape Effect
— Spin Wave resonance (SWR)

* Antiferromagnetic Resonance (AFMR)
* Electron Paramagnetic Resonance (EPR or ESR)

— Exchange narrowing
— Zero-field Splitting

* Maser

What we can learn:

* From absorption fine structure =2 electronic structure of single defects

* From changes in linewidth = relative motion of the spin to the surroundings
* From resonance frequency = internal magnetic field

e Collective spin excitations



FMR

Equation of motion of a magnetic moment u in an external field B,

T =y ac - TH ==Y
Shape effect: Landau-Lifshitz-Gilbert (LLG) equation
- - dM dM
internal magnetic field o= —yM X H ¢ + aM X —r
By = By — NyM, By = By — Ny M, B, = B — N,M,
dM . ,
dtx =y(M, B} — M,B}) = y[Bo + (N, — N, )M]M
dM
—= = Y[M(=NyMy) = My(Bo — N;M)] = —y[Bo + (Nx — N)M]M
To first order aM, =0 M,=M
dt
iw y[Bo + (N, — N, )M] )
—¥[Bo + (Ny — N;)M] iw

w§ =y?*[By + (Ny — N,)M][By + (N, — N,)M] Uniform mode



Uniform mode

Sphere flat plate with perpendicular field flat plate with in-plane field

ﬁ BO I BO
Nx=Ny=Nz Nx:NyZO NZ=47T NX:NZ:O Ny=47T
wo =¥ Bo wo =y (Bo—4mM) wo =¥ [Bo(Bo + 4M)]/2

Spin wave resonance; Magnons

Consider a one-dimensional spin chain with only nearest-neighbor interactions.

U= —ZIZS_{' § We can derive #hAw = 4JS(1 — cos ka)

When ka<<1  hw = (2JSa?)k?

flat plate with perpendicular field wo =y (By—4mM) + Dk?

Quantization of (uniform mode) spin waves, then consider the thermal excitation of
Mannons, leads to Bloch T3/2 law. AM /M (0) « T3/?



AFMR

Spin wave resonance; Antiferromagnetic Magnons

Consider a one-dimensional antiferromangetic spin chain with only nearest-neighbor
interactions. Treat sublattice A with up spin S and sublattice B with down spin =S, J<0.

U= —ZIZST" §]> We can derive  Aw = —4JS|sinkal |
When ka << 1 hw = (—4)S)|ka|

AFMR
exchange plus anisotropy fields on the two sublattices

Bl = —AMZ + BA2 on Ml BZ = _AMl — BA2 on M2

M{=M Mj=-M M}f=M{+iM]  MFf=MF+iM) Bg=IM

dM; , . .

i —iy[M7{ (B4 + Bg) + M3 Bg]
dMS _

i —iy[M5 (B4 + Bg) + M; Bg]
Y(Ba+Bg) —w YBEg

Bg Y(By + Bg) + w =0

w3 =y2B,(By + 2Bg) Uniform mode



Spintronics

Electronics with electron spin as an extra degree of freedom
Generate, inject, process, and detect spin currents

Generation: ferromagnetic materials, spin Hall
effect, spin pumping effect etc.

Injection: interfaces, heterogeneous structures,
tunnel junctions

Process: spin transfer torque

Detection: Giant Magnetoresistance, Tunneling
MR

Historically, from magnetic coupling to transport
phenomena

important materials: CoFe, CoFeB, Cu, Ru,
, MgO, Al203, Pt, Ta



RKKY (Ruderman-Kittel-Kasuya-Yosida ) interaction

Jll

I EVAN
\/

/\ > 7
T ®

\/

coupling coefficient

5B~ Re) =97 (L) P 2kl R - Rl

F
TCosT — sing

Magnetic coupling in superlattices
e Long-range incommensurate magnetic order in a Dy-Y multilayer

M. B. Salamon, Shantanu Sinha, J. J. Rhyne, J. E. Cunningham, Ross W.

Erwin

Julie Borchers, and C. P. Flynn, Phys. Rev. Lett. 56, 259 - 262 (1986)
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Fig. 2.41. A schematic expanded view of the sample structure showing the Fe(00 1) single-crystal
whisker substrate, the evaporated Cr wedge, and the Fe overlayer. The arrows in the Fe show the
magnetization direction in each domain. The z-scale is expanded approximately 5000 times. (From
[2.206])
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Fig. 2.43. SEMPA image of the magnetization M, (axes as in Fig. 2.41) showing domains in (a) the
clean Fe whisker, (b) the Fe layer covering the Cr spacer layer evaporated at 30 °C, and (c) the Fe
layer covering a Cr spacer evaporated on the Fe whisker held at 350 °C. The scale at the bottom
shows the increase in the thickness of the Cr wedge in (b) and (c). The arrows at the top of (¢) indicate
the Cr thicknesses where there are phase slips. The region of the whisker imaged is about 0.5 mm
long

(a)

(b)

Fig. 2.44. The effect of roughness on the inertlayer exchange coupling is shown by a comparison of
(a) the oscillations of the RHEED intensity along the bare Cr wedge with (b) the SEMPA
magnetization image over the same part of the wedge
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Fig. 2.11. Fermi surface of Cu in
the (100) plane in the extended
zone scheme. Arrows indicate
values of 2(kg — G) for reciprocal
lattice vectors G which can give rise
to oscillations with periods greater
than n/kg



Oscillatory magnetic coupling in multilayers

Ru interlayer has the largest coupling strength
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Fig. 2.58. Dependence of saturation field on Ru spacer layer thickness for several series of

Nig, Fe,o/Ru multilayers with structure, 100 A Ru/[30 A Nig,Fe,o/Ru(tg,)],0, Where the topmost
Ru layer thickness is adjusted to be ~25 A for all samples

S. S. P. Parkin

Kwo et al, PRB 35 7295 (1987)

43
Modulated magnetic properties in synthetic rare-earth Gd-Y superlattices



Spin-dependent conduction In
Ferromagnetic metals (Two-current model)

First suggested by Mott (1936)
Experimentally confirmed by I. A. Campbell and A. Fert (~1970)

At low temperature D= PPy
Prt Py
At high temperature p= PP+ P (or +p)
Pr+ Py +4py,
I l by A ’
(< <o (S I
LA IR R

Spin mixing effect equalizes two currents 44



Two Current Model

s electrons carry the
electric current

resistivity
(spin-dependent
s = d scattering)
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number of empty d states

Spin excitations in the
“two current model”

Majority
spin

’f v

Er

element N ¢ |m| [uB]

R " [Qm)]

Fe (bcc) 3.90 2.216
Co (hep)  2.80 1.715
Ni (fcc) 1.75 0.616
Cu (fcc) 0.50 —

9.71 x 10~°
6.25 x 10~°
6.84 x 10~°
1.68 x 107®

E
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spin

T

d band spin selective scattering

P4

Ti V Cr Mn Fe Co Ni
A. Fert, I.A. Campbell, PRL 21, 1190 (1968) 45




Anisotropic magnetoresistance (AMR)
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