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為什麼(大部分)磁鐵打破後會相斥? 



Cooperative phenomena 

• Elementary excitations in solids describe the 
response of a solid to a perturbation 

– Quasiparticles 

    usually fermions, resemble the particles that  
 make the system, e.g. quasi-electrons 

– Collective excitations 

    usually bosons, describe collective motions 

    use second quantization with Fermi-Dirac or Bose-  
 Einstein statistics 



Magnetism 

• the Bohr–van Leeuwen theorem 

 when statistical mechanics and classical mechanics are applied         
 consistently, the thermal average of the magnetization is always zero. 

• Magnetism in solids is solely a quantum mechanical effect 

• Origin of the magnetic moment: 

– Electron spin 𝑆  

– Electron orbital momentum 𝐿  

• From (macroscopic) response to external magnetic field 𝐻 

– Diamagnetism  < 0, χ~1 × 10−6, insensitive to temperature 

– Paramagnetism   > 0,  χ =
𝐶

𝑇
  Curie law 

    χ =
𝐶

𝑇+Δ
 Curie-Weiss law 

– Ferromagnetism  exchange interaction (quantum) 

https://en.wikipedia.org/wiki/Bohr%E2%80%93van_Leeuwen_theorem
https://en.wikipedia.org/wiki/Bohr%E2%80%93van_Leeuwen_theorem
https://en.wikipedia.org/wiki/Bohr%E2%80%93van_Leeuwen_theorem
https://en.wikipedia.org/wiki/Bohr%E2%80%93van_Leeuwen_theorem
https://en.wikipedia.org/wiki/Bohr%E2%80%93van_Leeuwen_theorem
https://en.wikipedia.org/wiki/Bohr%E2%80%93van_Leeuwen_theorem
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Magnetization
https://en.wikipedia.org/wiki/Quantum_mechanical


物質的磁性分類 

巨觀：  順磁性   逆磁性 
          Paramagnetism  diamagnetism 

微觀：  鐵磁性   反鐵磁性  亞鐵磁性 
        Ferromagnetism  Antiferromagnetism Ferrimagnetism 

http://en.wikipedia.org/wiki/File:Frog_diamagnetic_levitation.jpg
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• Classical and quantum theory for diamagnetism 
– Calculate 𝑟2  

• Classical and quantum theory for paramagnetism 
– Superparamagnetism, Langevin function 

– Hund’s rules 

– Magnetic state 𝐿𝐽
2𝑆+1  

– Crystal field 

– Quenching of orbital angular momentum Lz  

• Angular momentum operator 

• Spherical harmonics     

– Jahn-Teller effect 

– Paramagnetic susceptibility of conduction electrons 
 

https://en.wikipedia.org/wiki/Angular_momentum_operator
https://en.wikipedia.org/wiki/Angular_momentum_operator
https://en.wikipedia.org/wiki/Angular_momentum_operator
https://en.wikipedia.org/wiki/Spherical_harmonics
https://en.wikipedia.org/wiki/Spherical_harmonics


• Ferromagnetism 

– Microscopic – ferro, antiferro, ferri magnetism 

– Exchange interaction 

– Exchange splitting – source of magnetization 

 two-electron system spin-independent 
Schrodinger equation  

– Type of exchange: direct exchange, super 
exchange, indirect exchange, itinerant exchange 

– Spin Hamiltonian and Heisenberg model 

– Molecular-field (mean-field) approximation 



Critical phenomena 
Universality. Divergences near the critical point are identical in a variety of 
apparently different physical systems and also in a collection of simple models. 
Scaling. The key to understanding the critical point lies in understanding the 
relationship between systems of different sizes. Formal development of this 
idea led to the renormalization group of Wilson (1975). 

Landau Free Energy 

F(M, T) =A0(T)+A2(T)M 2 +A4(T)M 4 +HM. 

F 

M 

𝑡 ≡
𝑇 − 𝑇𝐶

𝑇𝐶
 

F  = a2tM 2  + a4M 4 + HM. 

Molar heat capacities of four ferromagnetic 
copper salts versus scaled temperature T/Tc. 
[Source Jongh and Miedema (1974).] 



Correspondence between Liquids and Magnets 

• Specific Heat—  
• Magnetization and Density—  
• Compressibility and Susceptibility—  
• Critical Isotherm—  
• Correlation Length —  
• Power-Law Decay at Critical Point—  

Summary of critical exponents, showing correspondence between fluid-gas systems, 
magnetic systems, and the three-dimensional Ising model. 

Relations Among Exponents 

𝛼 + 2𝛽 + 𝛾 = 2 

𝛿 = 1 + 𝛾
𝛽

 

2 − 𝜂 𝜈 = 𝛾 

2 − 𝛼 = 3𝜈 



• Stoner band ferromagnetism 
Teodorescu, C. M.; Lungu, G. A. (November 2008). "Band ferromagnetism in systems 
of variable dimensionality". Journal of Optoelectronics and Advanced Materials 10 
(11): 3058–3068. 

 

http://joam.inoe.ro/download.php?idu=1752
http://joam.inoe.ro/download.php?idu=1752


鐵磁性元素 : 鐵 Fe, 鈷 Co, 鎳 Ni, 釓 Gd, 鏑 Dy, 
        錳 Mn, 鈀 Pd ?? 

Elements with ferromagnetic properties 
合金, alloys 

錳氧化物 MnOx 
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Tetrahedron 
Cube 
hexahedron Octahedron Dodecahedron Icosahedron 

Platonic solid    From Wikipedia 

    In geometry, a Platonic solid is a convex polyhedron that is regular, in the 

sense of a regular polygon. Specifically, the faces of a Platonic solid are 

congruent regular polygons, with the same number of faces meeting at each 

vertex; thus, all its edges are congruent, as are its vertices and angles. 

There are precisely five Platonic solids (shown below): 

    The name of each figure is derived from its number of faces: respectively 4, 

6, 8, 12, and 20. 

    The aesthetic beauty and symmetry of the Platonic solids have made them a 

favorite subject of geometers for thousands of years. They are named for the 

ancient Greek philosopher Plato who theorized that the classical elements were 

constructed from the regular solids. 

http://en.wikipedia.org/wiki/Cube
http://en.wikipedia.org/wiki/Hexahedron
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Convex_polyhedron
http://en.wikipedia.org/wiki/Regular_polyhedron
http://en.wikipedia.org/wiki/Regular_polygon
http://en.wikipedia.org/wiki/Congruence_(geometry)
http://en.wikipedia.org/wiki/Vertex_(geometry)
http://en.wikipedia.org/wiki/Mathematical_beauty
http://en.wikipedia.org/wiki/Symmetry
http://en.wikipedia.org/wiki/Geometers
http://en.wikipedia.org/wiki/Greek_philosophy
http://en.wikipedia.org/wiki/Plato
http://en.wikipedia.org/wiki/Classical_element
http://en.wikipedia.org/wiki/File:Tetrahedron.svg
http://en.wikipedia.org/wiki/File:Hexahedron.svg
http://en.wikipedia.org/wiki/File:Octahedron.svg
http://en.wikipedia.org/wiki/File:POV-Ray-Dodecahedron.svg
http://en.wikipedia.org/wiki/File:Icosahedron.svg


Solar system 

s, p electron orbits 

Orbital viewer 15 

Electronic orbit 



Resonance 

One-
dimensional 

Two-
dimensional 

Hydrogen atom 
Three-
dimensional 



s, p electron orbital 

Orbital viewer 17 

3d transition metals: 
Mn atom has 5 d  electrons   Bulk Mn is NOT magnetic 

Co atom has 5 d electrons and 2 d  electrons 

Bulk Co is magnetic. 

3d electron distribution in real space 



d orbitals 

Crystal-field splitting 



Stern-Gerlach Experiment 

There are two kinds of electrons: 
spin-up and spin-down. 



Stoner criterion for ferromagnetism:  

 

For the non-magnetic state there 
are identical density of states 

for the two spins.  

For a ferromagnetic state, N↑ > 
N↓. The polarization is 

indicated by the thick blue 
arrow.  

I N(EF) > 1, I is the Stoner exchange parameter and 

N(EF) is the density of states at the Fermi energy. 

Schematic plot for the energy band structure of 3d transition metals.  

20 Teodorescu and Lungu, "Band ferromagnetism in systems of variable dimensionality". 
J  Optoelectronics and Adv. Mat. 10, 3058–3068 (2008). 

http://joam.inoe.ro/download.php?idu=1752
http://joam.inoe.ro/download.php?idu=1752


Exchange interaction 

https://en.wikipedia.org/wiki/exchange_interaction


Stoner–Wohlfarth model 

The Stoner–Wohlfarth model is a widely used model for the magnetization of single-
domain ferromagnets.[1] It is a simple example of magnetic hysteresis and is useful for 
modeling small magnetic particles in magnetic storage, biomagnetism, rock magnetism 
and paleomagnetism. 

Ku is the anisotropy parameter V  
is the volume of the magnet, Ms is 
the saturation magnetization, and 
μ0 is the vacuum permeability 

https://en.wikipedia.org/wiki/Stoner%E2%80%93Wohlfarth_model
https://en.wikipedia.org/wiki/Stoner%E2%80%93Wohlfarth_model
https://en.wikipedia.org/wiki/Stoner%E2%80%93Wohlfarth_model
https://en.wikipedia.org/wiki/Stoner%E2%80%93Wohlfarth_model
https://en.wikipedia.org/wiki/Stoner%E2%80%93Wohlfarth_model
https://en.wikipedia.org/wiki/Magnetization
https://en.wikipedia.org/wiki/Single-domain_(magnetic)
https://en.wikipedia.org/wiki/Single-domain_(magnetic)
https://en.wikipedia.org/wiki/Single-domain_(magnetic)
https://en.wikipedia.org/wiki/Ferromagnets
https://en.wikipedia.org/wiki/Stoner%E2%80%93Wohlfarth_model#cite_note-sw-1
https://en.wikipedia.org/wiki/Hysteresis#Magnetic_hysteresis
https://en.wikipedia.org/wiki/Magnetic_storage
https://en.wikipedia.org/wiki/Biomagnetism
https://en.wikipedia.org/wiki/Rock_magnetism
https://en.wikipedia.org/wiki/Paleomagnetism
https://en.wikipedia.org/wiki/Saturation_magnetization
https://en.wikipedia.org/wiki/Vacuum_permeability
https://en.wikipedia.org/wiki/Vacuum_permeability


Berry Phase 
Aharonov-Bohm Effect 

Electrons traveling around a flux tube suffer a phase 

change and can interfere with themselves even if 

they only travel through regions where B = 0.   

(B) An open flux tube is not experimentally 

realizable, but a small toroidal magnet with no flux 

leakage can be constructed instead. 

Electron hologram showing interference 

fringes of electrons passing through small 

toroidal magnet. The magnetic flux passing 

through the torus is quantized so as to produce 

an integer multiple of   phase change in the 

electron wave functions. The electron is 

completely screened from the magnetic 

induction in the magnet. In (A) the phase 

change is 0, while in (B) the phase change is . 

[Source: Tonomura (1993), p. 67.] 

Φ =  𝑑2𝑟 𝐵𝑧 =  𝑑𝑟 ∙ 𝐴  

𝐴𝜙 =
Φ

2𝜋𝑟
 



Parallel transport of a vector along a closed path on the sphere S2 leads 
to a geometric phase between initial and final state. 

Real-space Berry phases: Skyrmion soccer (invited) 

Karin Everschor-Sitte and Matthias Sitte 

Journal of Applied Physics 115, 172602 (2014); doi: 10.1063/1.4870695 

http://scitation.aip.org/content/aip/journal/jap/115/17/10.1063/1.4870695
http://scitation.aip.org/content/aip/journal/jap/115/17/10.1063/1.4870695
http://scitation.aip.org/content/aip/journal/jap/115/17/10.1063/1.4870695
http://scitation.aip.org/content/aip/journal/jap/115/17/10.1063/1.4870695
http://scitation.aip.org/content/aip/journal/jap/115/17/10.1063/1.4870695
http://scitation.aip.org/content/aip/journal/jap/115/17/10.1063/1.4870695
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Parameter dependent system: 

Berry phase formalism for 
intrinsic Hall effects 

Berry phase 
[Berry, Proc. Roy. Soc. London A 392, 451 (1984)] 

Adiabatic theorem: 

Geometric phase: 

From Prof. Guo Guang-Yu 
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From Prof. Guo Guang-Yu 
Well defined for a closed path 

Stokes theorem 

Berry Curvature 
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From Prof. Guo Guang-Yu 

Vector potential 

Analogies 

Berry curvature 

Geometric phase 

Berry connection 

Chern number  Dirac monopole 

Aharonov-Bohm phase 

Magnetic field 
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From Prof. Guo Guang-Yu 

Semiclassical dynamics of Bloch electrons 
Old version [e.g., Aschroft, Mermin, 1976] 

New version [Marder, 2000] 

Berry phase correction [Chang & Niu, PRL (1995), PRB (1996)] 

(Berry curvature) 



Demagnetization factor D 
can be solved analytically in some cases, numerically in others 

For an ellipsoid Dx + Dy + Dz = 1 (SI units) Dx + Dy + Dz = 4 (cgs units) 

Solution for Spheroid a = b  c 

1. Prolate spheroid (football shape)   c/a = r > 1 ; a = b , In cgs units 

 

 

 

Limiting case r >> 1 ( long rod ) 

 

 

2. Oblate Spheroid (pancake shape)   c/a = r < 1 ; a = b  

 

 

Limiting case r >> 1 ( flat disk) 

𝐷𝑎 = 𝐷𝑏 =
4𝜋 − 𝐷𝑐

2
 

c a 

a 

Note: you measure 2M  
without knowing the sample 

𝐷𝑐 = 4𝜋
𝑟2  ln 2𝑟 − 1 ≪ 1 

𝐷𝑎 = 𝐷𝑏 = 2𝜋 

𝐷𝑐 = 4𝜋
𝑟2−1

 𝑟

𝑟2−1
ln 𝑟 + 𝑟2 − 1 − 1  

𝐷𝑎 = 𝐷𝑏 =
4𝜋 − 𝐷𝑐

2
 𝐷𝑐 = 4𝜋

1−𝑟2  1 − 𝑟

1−𝑟2
cos−1 𝑟  

𝐷𝑐 = 4𝜋 

𝐷𝑎 = 𝐷𝑏 = 𝜋 2𝑟 ≪ 1 
Note: you measure 4M  
without knowing the sample 



Surface anisotropy 

• 𝐸𝑒𝑥 :  2𝐽𝑆𝑖 ∙  𝑆𝑗  

• 𝐸𝑍𝑒𝑒𝑚𝑎𝑛 : 𝑀 ∙ 𝐻 

• 𝐸𝑚𝑎𝑔 : 1

8𝜋
 𝐵2𝑑𝑉 

• 𝐸𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦  

        For hcp Co= 𝐾1
′ sin2 𝜃 + 𝐾2′ sin

4 𝜃 
        For bcc Fe = 𝐾1 𝛼1

2𝛼2
2 + 𝛼2

2𝛼3
2 + 𝛼3

2𝛼1
2 + 𝐾2 𝛼1

2𝛼2
2𝛼3

2  
     𝛼𝑖 : directional cosines 

     Surface anisotropy  𝐾eff =
2𝐾𝑆

𝑡
+ 𝐾𝑉   𝐾eff ∙ 𝑡 = 2𝐾𝑆 + 𝐾𝑉 ∙ 𝑡 

𝐸 = 𝐸𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 + 𝐸𝑍𝑒𝑒𝑚𝑎𝑛 + 𝐸𝑚𝑎𝑔 + 𝐸𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 + ⋯ 



Ferromagnetic domains 

For a 180 Bloch wall rotated in N+1 atomic planes 𝑁∆𝐸𝑒𝑥= 𝑁(𝐽𝑆2
𝜋

𝑁

2

) 

Wall energy density  𝜎𝑤 = 𝜎𝑒𝑥 + 𝜎𝑎𝑛𝑖𝑠 ≈ 𝐽𝑆2𝜋2/(𝑁𝑎2) + 𝐾𝑁𝑎 𝑎 : lattice constant 

𝜕𝜎𝑤/𝜕𝑁 ≡ 0, 𝑁 = [𝐽𝑆2𝜋2/(𝐾𝑎3)] ≈ 300 in Fe 

𝜎𝑤 = 2𝜋 𝐾𝐽𝑆2/𝑎 ≈ 1 erg/cm2  in Fe 

Wall width 𝑁𝑎 = 𝜋 𝐽𝑆2/𝐾𝑎 ≡ 𝜋
𝐴

𝐾
 𝐴 = 𝐽𝑆2/𝑎 Exchange stiffness constant , 

– competition between exchange, anisotropy, and 
magnetic energies. 

– Bloch wall: rotation out of the plane of the two spins 

– Neel wall: rotation within the plane of the two spins 
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Domain wall energy  versus thickness D of Ni80Fe20 thin films 

N < B ~ 50nm    

Thick films have Bloch walls 

Thin films have Neel walls 

Cross-tie walls show up in 

between.  

A=10-6 erg/cm 

      K=1500 erg/cm3 

      

D 

D  50nm 

Cross-tie zone 

N 

B 

N < B 



Magnetic Resonance 
• Nuclear Magnetic Resonance (NMR) 

– Line width 

– Hyperfine Splitting, Knight Shift 

– Nuclear Quadrupole Resonance (NQR) 

• Ferromagnetic Resonance (FMR) 
– Shape Effect 

– Spin Wave resonance (SWR) 

• Antiferromagnetic Resonance (AFMR) 

• Electron Paramagnetic Resonance (EPR or ESR) 
– Exchange narrowing 

– Zero-field Splitting 

• Maser 

What we can learn: 

• From absorption fine structure  electronic structure of single defects 

• From changes in linewidth  relative motion of the spin to the surroundings 

• From resonance frequency  internal magnetic field 

• Collective spin excitations 



FMR 

Shape effect: 

 internal magnetic field  

ℏ𝑑𝑰

𝑑𝑡
= 𝝁 × 𝑩 

𝑑𝝁

𝑑𝑡
= 𝛾𝝁 × 𝑩 

𝑑𝑴

𝑑𝑡
= 𝛾𝑴 × 𝑩 𝝁 = 𝛾ℏ𝑰 

𝐵𝑥
𝑖 = 𝐵𝑥

0 − 𝑁𝑥𝑀𝑥 𝐵𝑦
𝑖 = 𝐵𝑦

0 − 𝑁𝑦𝑀𝑦 𝐵𝑧
𝑖 = 𝐵𝑧

0 − 𝑁𝑧𝑀𝑧 

𝑑𝑀𝑥

𝑑𝑡
= 𝛾 𝑀𝑦𝐵𝑧

𝑖 − 𝑀𝑧𝐵𝑦
𝑖 = 𝛾[𝐵0 + 𝑁𝑦 − 𝑁𝑧 𝑀]𝑀𝑦 

𝑑𝑀𝑦

𝑑𝑡
= 𝛾 𝑀 −𝑁𝑥𝑀𝑥 − 𝑀𝑥 𝐵0 − 𝑁𝑧𝑀 = −𝛾[𝐵0 + 𝑁𝑥 − 𝑁𝑧 𝑀]𝑀𝑥 

𝑑𝑀𝑧

𝑑𝑡
= 0 𝑀𝑧= 𝑀 

𝑖𝜔 𝛾[𝐵0 + 𝑁𝑦 − 𝑁𝑧 𝑀] 

−𝛾[𝐵0 + 𝑁𝑥 − 𝑁𝑧 𝑀] 𝑖𝜔
= 0 

𝜔0
2 = 𝛾2[𝐵0 + 𝑁𝑦 − 𝑁𝑧 𝑀][𝐵0 + 𝑁𝑥 − 𝑁𝑧 𝑀] 

Equation of motion of a magnetic moment 𝝁 in an external field 𝐵0 

To first order 

Uniform mode 

Landau-Lifshitz-Gilbert (LLG) equation 

𝑑𝑴

𝑑𝑡
= −𝛾𝑴 × 𝑯eff + 𝛼𝑴 ×

𝑑𝑴

𝑑𝑡
 



Sphere flat plate with perpendicular field flat plate with in-plane field 

B0 B0 

𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 

𝜔0 = 𝛾 𝐵0 

𝑁𝑥 = 𝑁𝑦 = 0 𝑁𝑧 = 4𝜋 

𝜔0 = 𝛾 (𝐵0−4𝜋𝑀) 

𝑁𝑥 = 𝑁𝑧 = 0 𝑁𝑦 = 4𝜋 

𝜔0 = 𝛾 [𝐵0(𝐵0 + 4𝜋𝑀)]1/2 

Uniform mode 

Spin wave resonance; Magnons 

𝑈 = −2𝐽 𝑆𝑖 ∙  𝑆𝑗 We can derive  ℏ𝜔 = 4𝐽𝑆(1 − cos 𝑘𝑎) 

When  ka << 1 ℏ𝜔 ≅ (2𝐽𝑆𝑎2)𝑘2 

flat plate with perpendicular field 𝜔0 = 𝛾 (𝐵0−4𝜋𝑀) + 𝐷𝑘2 

Consider a one-dimensional spin chain with only nearest-neighbor interactions. 

Quantization of (uniform mode) spin waves, then consider the thermal excitation of 
Mannons, leads to Bloch T3/2 law. ∆𝑀/𝑀(0) ∝ 𝑇3/2 



AFMR 
Spin wave resonance; Antiferromagnetic Magnons 

𝑈 = −2𝐽 𝑆𝑖 ∙  𝑆𝑗 We can derive  ℏ𝜔 = −4𝐽𝑆| sin 𝑘𝑎 | 

When  ka << 1 ℏ𝜔 ≅ (−4𝐽𝑆)|𝑘𝑎| 

Consider a one-dimensional antiferromangetic spin chain with only nearest-neighbor 
interactions. Treat sublattice A with up spin S and sublattice B with down spin –S, J<0. 

AFMR 
 exchange plus anisotropy fields on the two sublattices 

𝑩1 = −𝜆𝑴2 + 𝐵𝐴𝒛  

𝑑𝑀1
+

𝑑𝑡
= −𝑖𝛾[𝑀1

+ 𝐵𝐴 + 𝐵𝐸 + 𝑀2
+𝐵𝐸] 

𝑑𝑀2
+

𝑑𝑡
= −𝑖𝛾[𝑀2

+ 𝐵𝐴 + 𝐵𝐸 + 𝑀1
+𝐵𝐸] 

𝛾 𝐵𝐴 + 𝐵𝐸 − 𝜔 𝛾𝐵𝐸

𝐵𝐸 𝛾 𝐵𝐴 + 𝐵𝐸 + 𝜔
= 0 

𝜔0
2 = 𝛾2𝐵𝐴 𝐵𝐴 + 2𝐵𝐸  Uniform mode 

on M1 𝑩2 = −𝜆𝑴1 − 𝐵𝐴𝒛  on M2 

𝑀1
𝑧 ≡ 𝑀 𝑀2

𝑧 ≡ −𝑀 𝑀1
+ ≡ 𝑀1

𝑥 + 𝑖𝑀1
𝑦

 𝑀2
+ ≡ 𝑀2

𝑥 + 𝑖𝑀2
𝑦

 𝐵𝐸 ≡ 𝜆𝑀 



Spintronics 
Electronics with electron spin as an extra degree of freedom 

Generate, inject, process, and detect spin currents 

• Generation: ferromagnetic materials,  spin Hall 
effect, spin pumping effect etc. 

• Injection: interfaces, heterogeneous structures, 
tunnel junctions 

• Process: spin transfer torque 
• Detection: Giant Magnetoresistance, Tunneling 

MR 
• Historically, from magnetic coupling to transport 

phenomena 
         important materials: CoFe, CoFeB, Cu, Ru, 
 IrMn, PtMn, MgO, Al2O3, Pt, Ta 



Magnetic coupling in superlattices 
• Long-range incommensurate magnetic order in a Dy-Y multilayer 
 M. B. Salamon, Shantanu Sinha, J. J. Rhyne, J. E. Cunningham, Ross W.  Erwin, 
Julie Borchers, and C. P. Flynn, Phys. Rev. Lett. 56, 259 - 262 (1986) 

• Observation of a Magnetic Antiphase Domain Structure with Long- Range 
Order in a Synthetic Gd-Y Superlattice  
 C. F. Majkrzak, J. W. Cable, J. Kwo, M. Hong, D. B. McWhan, Y. Yafet, and J.  V. 

Waszczak,C. Vettier, Phys. Rev. Lett. 56, 2700 - 2703 (1986)  

• Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of 
Fe Layers across Cr Interlayers 
   P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys.  Rev. 
Lett. 57, 2442 - 2445 (1986) 

RKKY (Ruderman-Kittel-Kasuya-Yosida ) interaction 

coupling coefficient 

38 



Magnetic coupling in multilayers 

•Long-range incommensurate magnetic order in a Dy-Y multilayer 
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Oscillatory magnetic coupling in multilayers 

Ru interlayer has the largest coupling strength 

43 Kwo et al, PRB 35 7295 (1987) 
Modulated magnetic properties in synthetic rare-earth Gd-Y superlattices 

S. S. P. Parkin 

|J1| at 1st peak 
(erg/cm2) 

Period 
(nm) 

Cu 0.3 1 

V 0.1 0.9 

Cr 0.24 1.8 

Ir 0.81 0.9 

Ru 5.0 1.2 



Spin-dependent conduction in  

Ferromagnetic metals (Two-current model) 
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First suggested by Mott (1936) 

Experimentally confirmed by I. A. Campbell and A. Fert (~1970) 
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At high temperature 

Spin mixing effect equalizes two currents 44 
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Two Current Model 

s electrons carry the  
electric current 

number of empty d states 

resistivity 
(spin-dependent  
s → d scattering) 
 

A. Fert, I.A. Campbell, PRL 21, 1190 (1968) 

spin selective scattering 

45 



46 

Anisotropic magnetoresistance (AMR)  

Polar 
 

Geometrical size effect 
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